Binary Choice Simulator

Monte Carlo simulation of collective decision-making between two options

Mathematical Model

The binary choice model describes the dynamics of individuals choosing between two alternatives:

$$\frac{dX_i}{dt} = \mu_i \left(N-\sum_{j=1}^2 X_j\right) - \frac{\theta_i X_i}{1+(X_i/k)^m} \quad i = 1, 2$$

This system models competitive dynamics where individuals can switch between two shelters or remain uncommitted.

Parameters:
Xi: Individuals in shelter i
N: Total population
μi: Joining rate for shelter i
θi: Leaving rate for shelter i
k: Threshold parameter
m: Cooperativity parameter

Model Parameters

Total number of individuals
Shelter 1 Parameters
Shelter 2 Parameters
Critical threshold parameter
Cooperativity exponent


Simulation Settings

Total simulation duration
Number of simulation runs

Competition Dynamics

Run simulation to view results