Binary Choice Simulator
Monte Carlo simulation of collective decision-making between two options
Mathematical Model
The binary choice model describes the dynamics of individuals choosing between two alternatives:
$$\frac{dX_i}{dt} = \mu_i \left(N-\sum_{j=1}^2 X_j\right) - \frac{\theta_i X_i}{1+(X_i/k)^m} \quad i = 1, 2$$
This system models competitive dynamics where individuals can switch between two shelters or remain uncommitted.
Parameters:
Xi: Individuals in shelter i
N: Total population
μi: Joining rate for shelter i
θi: Leaving rate for shelter i
k: Threshold parameter
m: Cooperativity parameter
Model Parameters
Competition Dynamics
Run simulation to view results