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General features

dX

dt
= F (X,λ)

◮ 1d phase space → fixed points are only possible attractors

◮ Real roots ω of characteristic equations → monotonic approach towards attractors

ω =

(
∂F

∂X

)

s

X

F

Xs

ω < 0, Xs stable

X

F

Xs

ω > 0, Xs unstable

X

F

Xs

ω = 0, Xs marginally stable (semi-stable)
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General features

◮ Complexity is here manifested by the coexistence of more than one simultaneously accessible
(i.e., stable) steady states (≡ fixed points).

Transition from single to multiple steady-states ? Relative stability ?
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Canonical example from chemical kinetics
Intuitive approach

3d order autocatalysis in an open well-stirred reactor

A+ 2X
k
⇄

k′

3X (A in excess) →
dX

dt
= kAX2

− k′X3 +
1

τ
(X0 −X)

Intuitive approach

dX

dt
= V (X)

︸ ︷︷ ︸

production

+
1

τ
(X0 −X)

︸ ︷︷ ︸

transport

where V (X) = kAX2
− k′X2
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Canonical example from chemical kinetics
Intuitive approach

Steady states

kAX2
s − k′X3

s
︸ ︷︷ ︸

l.h.s

=
1

τ
(Xs −X0)

︸ ︷︷ ︸

r.h.s

0

max at 2kA/3k′

zero at kA/k′

inflexion pt at

kA/3k′

Xs,2
Xs,1 Xs,3

large τ

smaller τ

intermediate τ

ℓ.h.s

r.h.s

◮ Transition between mono and bi stability : r.h.s. tangent to l.h.s.
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Canonical example from chemical kinetics
Analytic view

Analytic view

dX

dt
= kAX2

− k′X3 +
1

τ
(X0 −X)

4 parameters (too much !). Reduction to two parameters through scaling of X and t.

x =
X

X0
T = tk′X2

0 λ =
kA

k′X0
µ =

1

τk′X2
0

⇒
dx

dT
= −x3 + λx2

− µx+ µ
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Canonical example from chemical kinetics
Bifurcation analysis

Bifurcation analysis

dx

dT
= −x3 + λx2

− µx+ µ (after scaling)

◮ Elimination of x2 term through transformation z = x−
λ
3

⇒
dz

dT
= −

(

z +
λ

3

)3

+ λ

(

z +
λ

3

)2

− µ

(

z +
λ

3

)

+ µ

or,

⇒
dz

dT
= −z3 +

(
λ2

3
− µ

)

z +

(
2λ3

27
−

µλ

3
+ µ

)

(I)
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Canonical example from chemical kinetics
Bifurcation analysis

◮ First consider case where constant term vanishes. Condition on µ and λ for this

µ =
2λ3

9 (λ− 3)

(λ > 3, since µ > 0 for physical reasons)

Eq. for z becomes

dz

dT
= −z3 +

λ3
− 9λ2

9 (λ− 3)
z (II)

Steady states :
◮ z = 0 (λ > 9)

◮ z± = λ
3

√
λ−9
λ−3

(λ > 9)

◮ z = 0 (λ < 9)

pitchfork bifurcation
Notice that trivial state z = 0 becomes unstable beyond the bifurcation point λc. The stability of bifurcating
branches can be checked straightforwardly (supercritical bifurcation).
This example is in fact paradigmatic : any system in the vicinity of a pitchfork bifurcation can be reduced to eq.
(II) (normal form) where z is a combination of the variables (order parameter). All other variables follow z

passively
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Canonical example from chemical kinetics
Bifurcation analysis

◮ In the more general case where the constant term in (I) does not vanish, write equation as

dz

dT
= −z3 + λz + µ

According to the theory of cubic equations, we have the following situation for the steady
states :
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Canonical example from chemical kinetics
Bifurcation analysis

Limit point bifurcations !
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Canonical example from chemical kinetics
Kinetic potential and catastrophe theory

A system described by a single variable derives necessarily from a potential, in the sense

dz

dT
= −

∂U

∂z

For our canonical model, U is obtained by simple quadrature :

U =
z4

4
− λ

z2

2
− µz

Correspondence to stability :

◮ zs stable, U min

◮ zs unstable, U max
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Canonical example from chemical kinetics
Kinetic potential and catastrophe theory

Transition from one to two stable steady-states

µ < µc
µ = µc µ > µc

Relative stability :

basins of attraction of the two stable states, or depth of the minimum of the potential.

The concept of structural stability :

classify qualitatively different behaviors that remain robust upon slight changes of the control
parameters by determining how the potential is deformed when these parameters are changing.
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Canonical example from chemical kinetics
Kinetic potential and catastrophe theory

Catastrophes :

Situations separating qualitatively different behaviors (e.g., cusp point, middle curve of previous
slide)

◮ Full classification possible for cubic nonlinearities as long as two control parameters are
available.

◮ More involved situations for higher order nonlinearities or for multi-variate systems :
catastrophe theory.
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Population dynamics

Verhulst equation

dX

dt
= kX

(

1−
X

N

)

︸ ︷︷ ︸

F (X)

◮ Fixed points :

Xs1 = 0

XS2
= N

◮ Stability :

X = Xs + x

dx

dt
=

(

k −
2kXs

N

)

x

︸ ︷︷ ︸

(∂F/∂X)
s
≡ω
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Population dynamics

◮ Xs1 = 0 ⇒ ω = k

◮ Xs2 = N ⇒ ω = −k

Exchange of stability :

Transcritical bifurcation at criticality k = 0.

Analytic solution for k > 0 :

X (t) = N
X (0)

X (0) + (N −X (0)) e−kt
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Population dynamics
Comparison with data on population growth

Human population : Material production :
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Global energy balance and climatic change

Variability of earth’s climate over geological time scale. Quaternary glaciations interrupted by
interglacial periods.

Does earth’s climate admit multiple states ?

Energy balance equation on global scale :

C
dT

dt
= Q [1− a (T )]

︸ ︷︷ ︸

G(T )

−ǫσT 4

where

◮ C : heat capacity

◮ G(T ) : incoming minus reflected

◮ a(T ) : reflectivity (albedo)

◮ ǫ CO2 effect

◮ σT 4 : Stefan Boltzmann law
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Global energy balance and climatic change

Expected form of a : (ice-albedo feedback)

Graphic representation of steady state solutions :

⇒ limit point bifurcation
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