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General features

General features

X
X pxn
dt

> 1d phase space — fixed points are only possible attractors

> Real roots w of characteristic equations — monotonic approach towards attractors

_(‘9_1’)
o “=\ax ),

w < 0, X stable

w > 0, X5 unstable

AN w = 0, X marginally stable (semi-stable)

X
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General features

General features

» Complexity is here manifested by the coexistence of more than one simultaneously accessible
(i.e., stable) steady states (= fixed points).

st Xsl X.Sg

Transition from single to multiple steady-states ? Relative stability 7
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Canonical example from chemical kinetics

Canonical example from chemical kinetics
Intuitive approach

3d order autocatalysis in an open well-stirred reactor

k dx 1
A+2X 23X (A in excess) — — = kAX? —E'X3 4+
k/

- (Xo—-X
dt T(O )

Intuitive approach
ax

1
— = V(X) +=(Xo-X) where  V(X)=kAX? - k' X2
dt —— T

production transport
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Canonical example from chemical kinetics

Canonical example from chemical kinetics

Intuitive approach

Steady states

max at 2kA/3k"

smaller 7/

‘intermediate 7
1
kAX? - k'X3 = — (X5 — Xo)
—_——— T /
N——— inflexign pt at
I.h.s ;
r.h.s £ kAS3K, <o Targe 7
oL zero at kA/K'
X2 X X3

> Transition between mono and bi stability : r.h.s. tangent to l.h.s.
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Canonical example from chemical kinetics

Canonical example from chemical kinetics
Analytic view

Analytic view

X 1
X pAx? - X3 + = (X0 — X)
dt T

4 parameters (too much!). Reduction to two parameters through scaling of X and ¢.

X kA 1
r=— T=t'X; A= p=——
Xo k' Xo Tk X§
d
=>d—;i :—x3+)\x2—/mc+u
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Canonical example from chemical kinetics

Canonical example from chemical kinetics
Bifurcation analysis

Bifurcation analysis

dz
dr

= 234 —pzdp (after scaling)

> Elimination of x2 term through transformation z = z — 2

3

_ & LA 3+)\ +>\2 A
—=—|z+= z+ -] —plz
aT 3 3 " 3)TH

or,
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Canonical example from chemical kinetics

Canonical example from chemical kinetics
Bifurcation analysis

> First consider case where constant term vanishes. Condition on g and A for this

_ 2)3 (A > 3, since p > 0 for physical reasons)
=9 —3)

Eq. for z becomes

dz 5 AP —0A2

T- Yo" (IT)

Steady states :

> z2=0 (A>9)
> zizgﬂg A>9)
> z2=0 (A<9)

pitchfork bifurcation
Notice that trivial state z = 0 becomes unstable beyond the bifurcation point A.. The stability of bifurcating
branches can be checked straightforwardly (supercritical bifurcation).
This example is in fact paradigmatic : any system in the vicinity of a pitchfork bifurcation can be reduced to eq.
(I1) (normal form) where z is a combination of the variables (order parameter). All other variables follow z
passively
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Canonical example from chemical kinetics

Canonical example from chemical kinetics
Bifurcation analysis

> In the more general case where the constant term in (1) does not vanish, write equation as

dz 3

— =2+ Xz 4+

T K
According to the theory of cubic equations, we have the following situation for the steady
states :
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Canonical example from chemical kinetics

Canonical example from chemical kinetics
Bifurcation analysis

Limit point bifurcations!

—] A fixed, (1)

nfixed, (2)
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Canonical example from chemical kinetics

Canonical example from chemical kinetics
Kinetic potential and catastrophe theory

A system described by a single variable derives necessarily from a potential, in the sense

de _ _oU
dr = 9z

For our canonical model, U is obtained by simple quadrature :

24 2

z
U=2_2\Z_
1 g M2

Correspondence to stability :

> zs stable, U min

> zs unstable, U max
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Canonical example from chemical kinetics

Canonical example from chemical kinetics
Kinetic potential and catastrophe theory

Transition from one to two stable steady-states

o\

B < pe L e

Relative stability :

basins of attraction of the two stable states, or depth of the minimum of the potential.

The concept of structural stability :

classify qualitatively different behaviors that remain robust upon slight changes of the control
parameters by determining how the potential is deformed when these parameters are changing.
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Canonical example from chemical kinetics

Canonical example from chemical kinetics
Kinetic potential and catastrophe theory

Catastrophes :

Situations separating qualitatively different behaviors (e.g., cusp point, middle curve of previous
slide)

> Full classification possible for cubic nonlinearities as long as two control parameters are
available.

» More involved situations for higher order nonlinearities or for multi-variate systems :
catastrophe theory.
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Population dynamics

Population dynamics

Verhulst equation

N————
F(X)
» Fixed points :
Xs; =0
Xs, = N
> Stability :
X = Xs+z
dx ( 2kXS>
— = k— T
dt N
N———
(OF/0X) =w
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Population dynamics

Population dynamics

> X, =0=>w=k
> Xso =N=>w=-Fk

Analytic solution for k > 0 :
Exchange of stability :

IBifurcation diagram ¥ N X (0)
-N= t) =
Hom N =kt ®) X (0) + (N — X (0))e—Ht

stable
unstable k

— inflexion point

Transcritical bifurcation at criticality £ = 0.
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Population dynamics

Population dynamics

Comparison with data on population growth

Human population : Material production
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Figure 10 Logistic growth of raw material production, showing oscil-
lation on attaining ceiling conditions (Data fromS. G. Lasky, Eng. Mining J.,
156 (Sept., 1955))
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Global energy balance and climatic change

Global energy balance and climatic change

Variability of earth’s climate over geological time scale. Quaternary glaciations interrupted by
interglacial periods.
Does earth’s climate admit multiple states ?

T outgoing A‘ part feﬂected
infrared radiation back in space

incoming
solar radiation

i
|
i
|
i
|
|
|
i

earth
Energy balance equation on global scale :
where
» C' : heat capacity
C ar = Q[l —a(T)] —ecT* > G(T) : incoming minus reflected
dt —_—

> a(T) : reflectivity (albedo)
» ¢ COy effect

» oT* : Stefan Boltzmann law
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Global energy balance and climatic change

Global energy balance and climatic change

Expected form of a : (ice-albedo feedback)

a

T T

Graphic representation of steady state solutions :

/

eoT*

Energy

= limit point bifurcation
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