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General features of 2-variable systems

General features of 2-variable systems

dx dy
i z, i x,
o=@y i ACH)
> 2-d phase space. Typical manifestation of self-organization and
- . d complexity.
» Characteristic equation for w of 2"

degree :
possibility of complex conjugate roots
and hence of oscillatory behavior.

> Attractors in the form of fixed points
and 1-d closed curves (limit cycles)

Main question :

How are multiple steady states and limit cycles born in such systems?
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General features of 2-variable systems

Classification of fixed points

T =xs+ o Yy =1ys+ 0y

déz

— = Jui0 J126

gt 1102 + J120Yy

ddy

E = J216z + Jo2dy (J11 = (8f/6x)s etc)

Characteristic equation :

w? — (Ji1 + Ja2) w+ (J11J22 — Ji2J21) =0

Trace T of J determinant A of J

Ji1—w J12

=0
J21 Jog —w

T+ (T2 —4A)"? 174 D1/2
2 2

w1, 2 = (D = discriminant)
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General features of 2-variable systems

General features of 2-variable systems
Full list of the different possibilities

D > 0 : two real eigenvalues

» A > 0 roots have the same sign

5 5
Rew Rew
» A < 0 roots have oppositee sign
T<0 T=>0 T=0
3 3 3
Rew Rew Rew
» A = 0 At least one of the real roots is zero

‘ T<0 ‘ T>0 T=0

|

Rew Rew Rew
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General features of 2-variable systems

General features of 2-variable systems
Full list of the different possibilities

D < 0 : two complex conjugate eigenvalues

o T<0 T>0 . T>0
3 3 3
8 g 8
o °
Rew Rew Rew

D =0 : double eigenvalue

T<0 T>0
3
£
Rew

Rew

Imw
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General features of 2-variable systems

General features of 2-variable systems
Phase portraits

7)) > node, stable case (D >0, A >0,
! ; T < 0)

» saddle point (D >0, A <0)

» focus, stable case (D < 0, T < 0)
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Limit cycles : canonical example from chemical kinetics

Limit cycles : Canonical example from chemical kinetics

The irreversible Brusselator

AMx  BrxByic ox+vH3Ix xHMp

dx
prlli k1A — (k2B + kq) X + k3 X?Y
dy

—— = koBX —k3X?%Y

dt

4 parameters (too much!). Again, reduction to 2 parameters through scaling

ks \ /2 ks \ /2 E2k3\ /2 k
T = kat, x:(—?’) X, y:(—3> Y a:(13) A, b="2%B
ka4 kg4 kz k4

d; d
:>%:a—(b+1)x+x2y %:bx—xzy
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Limit cycles : canonical example from chemical kinetics

Limit cycles : Canonical example from chemical kinetics

Stationary states

Qo

s = Q Ys =

Stability

b
r=a+o0x y=—4+0d0y
a

I

_ 2
o - 10T
dt \9y b g2 dy
26902 + 2ad6xz6y + 6x20y

_ <§5$2 + 2adzdy + 5m25y)

nonlinear part
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Limit cycles : canonical example from chemical kinetics

Limit cycles : Canonical example from chemical kinetics

Eigenvalues w of J given by the characteristic equation

w2—(b—l—a2)w+a2:O

b—1—a24+/(b—1—a2)?—4a?
=> w =

2
real if  (b—1-a2)’—-4a>2 >0
complex if (b —-1- a2)2 — 4a? <0
stable if b—1—a? <0
unstable if b—1—a? >0
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Limit cycles : canonical example from chemical kinetics

Limit cycles : Canonical example from chemical kinetics

stable, real stable, complex unstable, complex unstable, real
L 2 2 2
(a—1) b =a°+1 (a+1) b
(Hopf bif. point)
Rew=0
Imw#0
- - ) ,(,,
ot D BES
> e . - - R P
R4 v A y &
(node) (focus) (focus) (node)

Phase space portraits
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Limit cycles : canonical example from chemical kinetics

Limit cycles : Canonical example from chemical kinetics

For b > a? + 1 : amplified oscillations of the linearized system

Nonlinearities saturate growth and lead to an attracting periodic solution represented by a closed
curve in phase space (limit cycle).

Bifurcation diagram

amplitude
,//
st /bly//
> /
stable i unstable
a?+1 b

Hopf bifurcation
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Some global results related to limit cycles in ...

Some global results related to limit cycles in two variable systems

Bendixson's criterion :

For a closed trajectory to exist, + ag must change sign in the (z,y) plane or vanish identically.

Bendixson's theorem :

The region bounded by a closed trajectory in (x,y) plane contains at least one fixed point (steady
state solution)

Poincare-Bendixson’s theorem :

Any trajectory staying in a finite region of (z,y) phase space either approaches a fixed point or a
periodic orbit. As a corollary, chaotic behavior in continuous time systems can only arise in the
presence of at least three coupled variables.
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[llustration of Bendixson's criterion

Damped oscillator

x position, v velocity

of 9y
dz o — 4+ ==—7<0
il v=f ox  Ov
dv - = no closed trajectory
g = —IT—YW=g

Brusselator

Expression changes sign for

af  Og 2
gdLH —(b+1)+2zy—22 =0
8a:+8y (b+1)+22y -
a—(b+1)a:+a:2y b+ 1+ 22
g = bx—a’y vo= 2%

= possibility of closed trajectory
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