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Linear stability analysis in the presence of diffusion Wave propagation

Evolution laws in the form of partial differential equation supplemented with appropriate
boundary conditions

Principal new feature : pattern formation

Spontaneous onset of solutions exhibiting a space dependence that is qualitatively different from
that of the system’s geometry and of the external environment (spontaneous symmetry breaking).

Two representative cases :

◮ Turing instability (pattern formation concomitant to the loss of stability of the uniform
state), illustrated on the Brusselator.

◮ Wave propagation, illustrated on the Fisher equation.
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Linear stability analysis in the presence of diffusion

Xi (r, t) = Xis
︸︷︷︸

uniform steady state

+ xi(r, t)
︸ ︷︷ ︸

perturbation

Linearized reaction-diffusion equations :

∂xi

∂t
=
∑

j

Ji,jxj +Di∇
2xi (1)

+ boundary conditions

We introduce the eigenfunctions and eigenvalues of ∇2 compatible with the boundary conditions,

∇2φm(r) = −k2mφm(r) (2)
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Linear stability analysis in the presence of diffusion

and seek for solutions of (1) in the form

xi = uie
ωtφm(r) (3)

(justified from the fact that the coefficients in (1) are constant since they are evaluated at the
uniform steady state)

We obtain (after simplifying by eωtφm(r))

∑

j

Jijuj −
(
Dik

2
m + ω

)
ui = 0

or,

∑

j

[

Jij −
(
Dik

2
m + ω

)
δkrij

]

uj = 0
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Linear stability analysis in the presence of diffusion

leading to the characteristic equation determined by the calculation of the determinant. The
onset of a symmetry-breaking instability will be signaled by ωc = 0 for a critical parameter value
(say, b) hidden in the coefficients Jij . The characteristic equation provides a relation linking b to
km. If this relation is of the form

then at the instability threshdold bc
the solutions (3) will have a non-trivial
space dependence, since kmc

6= 0. This
provides us a quantitative criterion for
checking the possibility of a symmetry
breaking (Turing) instability.
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Linear stability analysis in the presence of diffusion
Illustration on the Brusselator

∂x

∂T
= a − (b+ 1) x+ x2y +D1∇

2x

∂y

∂T
= bx− x2y +D2∇

2y

Seek for solutions in the form

(
x
y

)

=

(
u1

u2

)

φ(r
−

)eωT

where φ(r
−

) is an eigenfunction of the Laplacian ∇2

∇2φm = −k2mφm (e.g. φm ≈ e
ikm r

− for periodic boundary conditions)

Characteristic equation of J
≈

becomes

ω2 −
(
b− a2 − 1− (D1 +D2) k

2
m

)
ω + a2 +

(
a2D1k

2
m − (b− 1)D2k

2
m

)
+D1D2k

4
m = 0
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Linear stability analysis in the presence of diffusion
Illustration on the Brusselator

Criticality possible for real ω’s.

ω = 0 for

b = D1k
2
m + a2

D1

D2

+ 1 +
a2

D2k2m

minimum at

bc =

(

1 +

√

D1

D2

a

)2

k2m,c =
a

(D1D2)
1/2

︸ ︷︷ ︸

non-trivial space dependence !

⇒ Turing instability : prelude to pattern formation
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Linear stability analysis in the presence of diffusion
Illustration on the Brusselator

Condition for Turing instability

Condition for Turing instability to take over the instability leading to limit cycle behavior :

bc(Turing) < bc(Hopf) or
(

1 +

√

D1

D2

a

)2

< 1 + a2

⇒ D1 < D2

Experimental evidence :

Belousov-Zhabotinski reaction, ants cemeteries (cf. Lecture 1).
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Wave propagation

Generalities

Traveling wave : a disturbence propagating at finite (constant) velocity in space :

X (r, t) = f (r − vt)

where v is the propagation velocity

Ubiquity of traveling waves in nature :

◮ linear waves
◮ electromagnetic waves (at basis of telecommunications)
◮ sound waves (at basis of everyday communication)

◮ nonlinear waves
◮ water waves (at basis of oceanic circulation)
◮ nerve impulse (at basis of cognition)
◮ propagation of innovations (mutations, rumors, ...)

S.C. Nicolis Applied Dynamical Systems



Linear stability analysis in the presence of diffusion Wave propagation

Wave propagation

Typical mechanism for nonlinear wave generation in a reaction-diffusion system :

∂Xi

∂t
= Fi (X1, ...Xn) +D∇2Xi

Xis fixed points, solutions of Fi ({Xjs}) = 0.

Let there be several fixed points. A propagating wave can then exist, in principle, as a phase
space trajectory joining pairs of fixed points.
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Wave propagation
Illustration : Fisher’s equation in 1-d space

∂X

∂t
= kX

(

1−
X

N

)

+D
∂2X

∂r2
(−∞ < r < ∞)

First scaling

x =
X

N
⇒

∂x

∂t
= kx (1− x) +D

∂2x

∂r2

Second scaling

τ = kt, ρ = r (k/D)1/2

Equation becomes,

∂x

∂τ
= x (1− x) +

∂2x

∂ρ2
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Wave propagation
Illustration : Fisher’s equation in 1-d space

Traveling wave :

x = f




ρ− vτ
︸ ︷︷ ︸

z






(*) transformed in an o.d.e for f

f ′′ + vf ′ + f(1− f) = 0 (∗∗)

where differentiation is with respect to z.
Expected shape of f :

i.e., f(z = −∞) = 1, f(z = ∞) = 0.

It can be shown by a phase space analysis that solutions of
the above kind exist for any v ≥ 2 (or, in initial variables,

v ≥ 2

√
kD).

Furthermore, for sufficiently sharply varying initial conditions,
all solutions tend to the wave associated to the minimum
speed vmin = 2.
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Wave propagation
Illustration : Fisher’s equation in 1-d space

Analytic construction :

new scaling : ξ = z
v
= ǫ1/2z, f = g (ξ). where ǫ = 1/v2 is regarded as a small quantity

(ǫ ≤ 0.25).
(**) becomes

ǫ
d2g

dξ2
+

dg

dξ
+ g (1− g)

Seek for solutions

y = g0 (ξ) + ǫg1 (ξ) + ...

Then, to the dominant order in ǫ,

dg0

dξ
= −g0 (1− g0) ⇒ g0 (ξ) =

1

1 + eξ

or, in original variables,

f(z) =
1

1 + ez/v
+ corrections of higher order in 1/v2
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