Project I

Reading:

Strogatz, Nonlinear Dynamics and Chaos, Chapter 6 Edelstein-Keshet, Mathematical Models in Biology, Chapter 6

Some Papers You can download from the webpage

1 A linear oscillator

$$
\frac{d^{2} x}{d t^{2}}=-\omega^{2} x
$$

transformed to two variables through

$$
\begin{aligned}
& \frac{d x}{d t}=v \\
& \frac{d v}{d t}=-\omega^{2} x
\end{aligned}
$$

1. (1/20) For $v_{0}=0$ and $x_{0}=0,0.1$ and 0.2 as initial conditions and $\omega \neq 0$, integrate numerically the equations, draw the phase space portrait and identify the invariant sets.

2 The Lotka-Volterra oscillator

Consider a population density x of rabbits (the preys) and a population density y of foxes (the predators). Their interactions can be formulated in the following way:

$$
\begin{aligned}
& \frac{d x}{d t}=a x-k x y \\
& \frac{d y}{d t}=k x y-\gamma y
\end{aligned}
$$

where a is the birth rate of rabbit's population, k the interaction rate between rabbits and foxes and γ is the death rate of the fox population

1. (3/20) For the parameter values of your choice (don't forget though that parameters are rate parameters) and initial conditions equal to $\left\{x_{0}=0.1, y_{0}=0.1\right\}$ and $\left\{x_{0}=1, y_{0}=1\right\}$, integrate numerically the equations, draw the phase space portrait and identify the invariant sets.
2. (1/20) Discuss the biological meaning of the invariant sets
3. (2/20) Find a chemical equivalent scheme
4. (3/20) Show that the quantity $U=k(x+y)-\gamma \ln x-a \ln y$ is conserved during the dynamics.

3 The Oregonator

The Oregonator model captures the essential features of the Belousov-Zhabotinsky reaction. The kinetic scheme can be written as

$$
\begin{array}{rll}
A+Y & \xrightarrow{k_{1}} & X \\
X+Y & \xrightarrow{k_{2}} & P \\
B+X & \xrightarrow{k_{34}} & 2 X+Z \\
X+X & \xrightarrow{k_{5}} & Q \\
Z & \xrightarrow{k_{6}} Y
\end{array}
$$

1. (1/20) Specify from the litterature the chemical equivalents of X, Y and Z.
2. (2/20) Write the balance equations for X, Y and Z
3. (3/20) It can be shown that the balance equantions can be scaled in the following way

$$
\begin{aligned}
\frac{1}{\epsilon}\left(\frac{d x}{d \tau}\right) & =y-x y+x(1-q x) \\
\epsilon\left(\frac{d y}{d \tau}\right) & =-y-x y+z \\
\frac{d z}{d \tau} & =w(x-z)
\end{aligned}
$$

Integrate numerically the equations and draw phase portrait in projection into x, y plane and in a 3 -d perspective for parameter values equal to $\epsilon=77.27$, $q=8.375 \times 10^{-6}$ and $w=0.1610$ and different initial conditions. Identify the invariant set.

4 The Lorenz model of thermal convection

$$
\begin{aligned}
& \frac{d x}{d t}=\sigma(-x+y) \\
& \frac{d y}{d t}=r x-y-x z \\
& \frac{d z}{d t}=x y-b z
\end{aligned}
$$

For $\sigma=10, b=\frac{8}{3}$ and $r=\frac{1}{2}, 2,23.5$ and 28 and initial conditions for x, y and z between $[-1: 1]$:

- (3/20) Draw phase portrait in projection into x, z plane and in a 3 -d perspective
- (1/20) Comment on the qualitative changes as r is gradually increased.

