
Mathematical Biology - Lecture 3 – population 



and then there were many 

• A population is all the organisms of the same group 

or species who live in the same geographical are and are capable 

of interbreeding. 

• population studies – censuses from Roman times, more elaborate 

modern versions, birdwatchers, pugmarks – rich statistics 

• Fibonacci – one of the first models of population – rabbits that 

don’t die 

• Euler, Laplace 

• models that explain the data through self-regulating mechanisms 

• models that look explicitly at interactions between species and 

environment 

 



the population according to Malthus 

dynamics of population – how does the  

population change over time 

 

generations – discrete-time or metered models 

 

Thomas Robert Malthus – exponential growth in 

population limited only be famine, disease etc 

 

in discrete time,         𝑁𝑛+1 = 1 + 𝑏 − 𝑑 𝑁𝑛 = 𝜆𝑁 

 

in continuous time,    
𝑑𝑁

𝑑𝑡
= 𝑟𝑁   



beetles, bud moths and blowflies 

useful in modeling insect populations etc when 

intra-specific competition for resources is the 

critical factor 

Nn+1 = R0S Nn Nn = f(Nn), R0 - average 

number of offspring, S() – survival function 

 

Contest competition – winner takes all 

Scramble competition – equal shares 

 

in real data, we see over-compensation, under-

compensation not perfect compensation 

Hassell equation: 𝑁𝑛+1 = 𝑓 𝑁𝑛 =  
𝑅0𝑁𝑛

1+𝑎𝑁𝑛
𝑏 

 

 

 

b = 1 

b > 1 



the population according to Verhulst 

How do the limiting factors to population work? 

Malthus: 
𝑑𝑁

𝑑𝑡
= 𝑓 𝑁 = 𝑏 − 𝑑 𝑁 =  𝑟𝑁 

Verhulst: 
𝑑𝑁

𝑑𝑡
= 𝑓 𝑁 = 𝑟𝑁(1 −

𝑁

𝐾
), quadratic term inspired from physics 

r – net per capita growth rate as before, K – carrying capacity of the 

environment 



how many people on earth 

   Malthus: 𝑁 𝑡 = 𝑁0𝑒𝑟𝑡 

   Verhulst: 𝑁 𝑡 =
𝑁0𝑒𝑟𝑡

𝐾−𝑁0+𝑁0𝑒𝑟𝑡 

 

the Malthusian model is the simplest and is often used when a 

population model has to be embedded in more complex models 

 

the logistic equation has been successful in explaining many 

populations or related effects 

Earth’s carrying capacity:2 billion in 1924, revised to 2.6 billion in 1936 

 

Allee effect – depensatory growth – guillemots 



what do we choose: K or r 

    
𝑑𝑁1

𝑑𝑡
= 𝑟1𝑁1(1 −

𝑁

𝐾1
), 

𝑑𝑁2

𝑑𝑡
= 𝑟2𝑁2 1 −

𝑁

𝐾2
, 𝑁 = 𝑁1 + 𝑁2 

 

A mutant competing with the original population – but does it invade? 

 

(𝐾1, 0) is a steady state but if it is not stable, we can say the mutant 

invades. 

 

The Jacobian matrix is given by 

−𝑟1 −𝑟1

0 𝑟2 1 −
𝐾1

𝐾2

 



age-structure 

Fibonacci rabbits: 
𝑧1,𝑛+1

𝑧2,𝑛+1
=

0 1
1 1

𝑧1,𝑛

𝑧2,𝑛
 

Leslie matrices: 𝑧𝑛+1 = 𝐿𝑧𝑛 

L = 

𝑠1𝑚1 𝑠1𝑚2 ⋯ 𝑠1𝑚𝜔−1 𝑠1𝑚𝜔

𝑠2
0

𝑠3 ⋱
   0         0

⋮
0
0

⋯ 𝑠𝜔         0

 

𝑠𝑖 – survival function – probability of surviving from age i-1 to i 

𝑚𝑖- maternity function at age i 

 

Euler-Lotka equations 



interacting species 

population of any one species depends on interactions with other 

species 

 

competition – inhibitory effect for both 

symbiosis or mutualism – beneficial effect for both 

predation or parasitism – opposite effects for prey and predator 

 

we look at predation: host-parasitoid interactions 

 

Nicholson-Bailey model:  

non-overlapping generations of parasitoids 

parasitised host dies 



Nicholson-Bailey 

𝐻𝑛, 𝑃𝑛- number of hosts, parasitoids at generation n 

𝑅0 - basic reproductive ratio of host  

c – average number of parasite eggs that survive to breed 

f(H,P) – fraction not parasitised 

 

Census takes place at the beginning of season before parasitism 

𝐻𝑛+1 = 𝑅0𝐻𝑛𝑓 𝐻𝑛, 𝑃𝑛 , 𝑃𝑛+1 = 𝑐𝐻𝑛(1 − 𝑓 𝐻𝑛, 𝑃𝑛 ) 

 

Jacobian at steady state:  
𝑅0(𝑓∗ + 𝐻∗𝑓𝐻

∗) 𝑅0𝐻∗𝑓𝑃
∗

𝑐(1 − 𝑓∗ − 𝐻∗𝑓𝐻
∗) −𝑐𝐻∗𝑓𝑃

∗  

 

Jury conditions for stability: |tr(J)| < det(J) + 1, det(J) < 1 

 



Nicholson-Bailey 

Nicholson-Bailey assumes parasitoids search for hosts according to a 

Poisson process with parameter a 

 

𝑓(𝐻𝑛, 𝑃𝑛) = exp (−𝑎𝑃𝑛) 

 

Justification: Each season the parasitoids search for hosts randomly 

and the number of hosts changes as 
𝑑𝐻

𝑑𝑡
= −𝛼𝑃𝐻 

 

assuming parasitoid population is constant and integrating over the 

time of the search, H(n + 𝜏) = 𝐻𝑛exp (−𝛼𝑃𝑛𝜏) 



Lotka-Volterra 

Modeling predator-prey interactions – fishing in the Mediterranean – 

Volterra and his son-in-law, independently Lotka 

 

Laws of theoretical ecology 

 

 



Lotka-Volterra - assumptions 

U – number of prey, V – number of predators 

 

rate of change of U = net rate of growth without predation – loss due to 

predation 

rate of change of V = net rate of growth due to predation – loss without 

prey 

 

- Prey limited only by predator, otherwise grows exponentially 

- Predation term linear in U 

- No interference between predators in finding prey 

- Without prey, predator dies off exponentially 

- Every unit of prey death contributes to unit growth in predator 

 

 



Lotka-Volterra - equations 

𝑑𝑈

𝑑𝜏
= 𝛼𝑈 − 𝛾𝑈𝑉,

𝑑𝑉

𝑑𝜏
= 𝑒𝛾𝑈𝑉 − 𝛽𝑉 

 

Steady state at (0,0) 

Non-trivial steady state at (
𝛽

𝑒𝛾
,

𝛼

𝛾
)  

 

In the Volterra fishing example, we can add catchability coefficients for 

predator and prey p, q and constant effort E: 

 
𝑑𝑈

𝑑𝜏
= 𝛼𝑈 − 𝑝𝐸𝑈 −  𝛾𝑈𝑉,

𝑑𝑉

𝑑𝜏
= 𝑒𝛾𝑈𝑉 − 𝑞𝐸𝑉 −  𝛽𝑉 etc 

 



Lotka-Volterra - analysis 

Non-dimensionalising by u = U/U*, v = V/V* and rescaling time, we get 
𝑑𝑢

𝑑𝑡
= 𝑢 1 − 𝑣 ,   

𝑑𝑣

𝑑𝑡
= 𝑎𝑣 𝑢 − 1 , 𝑎 =

𝑞𝐸 + 𝛽

𝛼 − 𝑝𝐸
 

 

We get the equation of the phase plane as 
𝑑𝑣

𝑑𝑢
=

𝑎𝑣 𝑢 − 1

𝑢 1 − 𝑣
 

 

This has periodic solutions: 

Φ 𝑢, 𝑣 = 𝑎 𝑢 − log 𝑢 + 𝑣 − log 𝑣 = 𝐴 



Lotka-Volterra - analysis 

Average population is the steady state population but both prey and 

predator populations crash in every cycle 


