

Mathematical Biology - Lecture 3 - population

and then there were many

- A population is all the organisms of the same group
or species who live in the same geographical are and are capable of interbreeding.
- population studies - censuses from Roman times, more elaborate modern versions, birdwatchers, pugmarks - rich statistics
- Fibonacci - one of the first models of population - rabbits that don't die
- Euler, Laplace
- models that explain the data through self-regulating mechanisms
- models that look explicitly at interactions between species and environment

the population according to Malthus

dynamics of population - how does the population change over time
generations - discrete-time or metered models
Thomas Robert Malthus - exponential growth in population limited only be famine, disease etc

in discrete time,

$$
N_{n+1}=(1+b-d) N_{n}=\lambda N
$$

in continuous time, $\quad \frac{d N}{d t}=r N$

beetles, bud moths and blowflies

useful in modeling insect populations etc when intra-specific competition for resources is the critical factor
$\mathrm{N}_{\mathrm{n}+1}=\mathrm{R}_{0} \mathrm{~S}\left(\mathrm{~N}_{\mathrm{n}}\right) \mathrm{N}_{\mathrm{n}}=\mathrm{f}\left(\mathrm{N}_{\mathrm{n}}\right), \mathrm{R}_{0}$ - average number of offspring, $S()$ - survival function
$b=1$

b>1
(b)

in real data, we see over-compensation, undercompensation not perfect compensation
Hassell equation: $N_{n+1}=f\left(N_{n}\right)=\frac{R_{0} N_{n}}{\left(1+a N_{n}\right)^{b}}$

the population according to Verhulst

How do the limiting factors to population work?
Malthus: $\frac{d N}{d t}=f(N)=(b-d) N=r N$
Verhulst: $\frac{d N}{d t}=f(N)=r N\left(1-\frac{N}{K}\right)$, quadratic term inspired from physics r - net per capita growth rate as before, K - carrying capacity of the environment

how many people on earth

Malthus: $N(t)=N_{0} e^{r t}$
Verhulst: $N(t)=\frac{N_{0} e^{r t}}{K-N_{0}+N_{0} e^{r t}}$
the Malthusian model is the simplest and is often used when a population model has to be embedded in more complex models
the logistic equation has been successful in explaining many populations or related effects Earth's carrying capacity:2 billion in 1924, revised to 2.6 billion in 1936

Allee effect - depensatory growth - guillemots

what do we choose: K or r

$$
\frac{d N_{1}}{d t}=r_{1} N_{1}\left(1-\frac{N}{K_{1}}\right), \frac{d N_{2}}{d t}=r_{2} N_{2}\left(1-\frac{N}{K_{2}}\right), N=N_{1}+N_{2}
$$

A mutant competing with the original population - but does it invade?
$\left(K_{1}, 0\right)$ is a steady state but if it is not stable, we can say the mutant invades.

The Jacobian matrix is given by $\left[\begin{array}{cc}-r_{1} & -r_{1} \\ 0 & r_{2}\left(1-\frac{K_{1}}{K_{2}}\right)\end{array}\right]$

age-structure

Fibonacci rabbits:

$$
\begin{aligned}
& z_{1, n+1} \\
& z_{2, n+1}
\end{aligned}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]_{z_{2, n}}^{z_{1, n}}
$$

Leslie matrices: $z_{n+1}=L z_{n}$
$\mathrm{L}=\left[\begin{array}{ccccc}s_{1} m_{1} & s_{1} m_{2} \cdots & s_{1} m_{\omega-1} & s_{1} m_{\omega} \\ & 0 & 0 & 0 \\ s_{2} & s_{3} \ddots & & \vdots & \\ 0 & \cdots & s_{\omega} & 0\end{array}\right]$
s_{i} - survival function - probability of surviving from age $\mathrm{i}-1$ to i $m_{i}-$ maternity function at age i

Euler-Lotka equations

interacting species

population of any one species depends on interactions with other species
competition - inhibitory effect for both symbiosis or mutualism - beneficial effect for both predation or parasitism - opposite effects for prey and predator
we look at predation: host-parasitoid interactions

Nicholson-Bailey model: non-overlapping generations of parasitoids parasitised host dies

Nicholson-Bailey

H_{n}, P_{n} - number of hosts, parasitoids at generation n R_{0} - basic reproductive ratio of host
c - average number of parasite eggs that survive to breed
$\mathrm{f}(\mathrm{H}, \mathrm{P})$ - fraction not parasitised
Census takes place at the beginning of season before parasitism

$$
H_{n+1}=R_{0} H_{n} f\left(H_{n}, P_{n}\right), \quad P_{n+1}=c H_{n}\left(1-f\left(H_{n}, P_{n}\right)\right)
$$

Jacobian at steady state: $\left[\begin{array}{cc}R_{0}\left(f^{*}+H^{*} f_{H}^{*}\right) & R_{0} H^{*} f_{P}^{*} \\ c\left(1-f^{*}-H^{*} f_{H}^{*}\right) & -c H^{*} f_{P}^{*}\end{array}\right]$
Jury conditions for stability: $|\operatorname{tr}(\mathrm{J})|<\operatorname{det}(\mathrm{J})+1, \operatorname{det}(\mathrm{~J})<1$

Nicholson-Bailey

Nicholson-Bailey assumes parasitoids search for hosts according to a Poisson process with parameter a

$$
f\left(H_{n}, P_{n}\right)=\exp \left(-a P_{n}\right)
$$

Justification: Each season the parasitoids search for hosts randomly and the number of hosts changes as $\frac{d H}{d t}=-\alpha P H$
assuming parasitoid population is constant and integrating over the time of the search, $\mathrm{H}(\mathrm{n}+\tau)=H_{n} \exp \left(-\alpha P_{n} \tau\right)$

Lotka-Volterra

Modeling predator-prey interactions - fishing in the Mediterranean Volterra and his son-in-law, independently Lotka

Laws of theoretical ecology

Lotka-Volterra - assumptions

U - number of prey, V - number of predators
rate of change of $U=$ net rate of growth without predation - loss due to predation
rate of change of $\mathrm{V}=$ net rate of growth due to predation - loss without prey

- Prey limited only by predator, otherwise grows exponentially
- Predation term linear in U
- No interference between predators in finding prey
- Without prey, predator dies off exponentially
- Every unit of prey death contributes to unit growth in predator

Lotka-Volterra - equations

$$
\frac{d U}{d \tau}=\alpha U-\gamma U V, \frac{d V}{d \tau}=e \gamma U V-\beta V
$$

Steady state at $(0,0)$
Non-trivial steady state at $\left(\frac{\beta}{e \gamma}, \frac{\alpha}{\gamma}\right)$
In the Volterra fishing example, we can add catchability coefficients for predator and prey p, q and constant effort E:

$$
\frac{d U}{d \tau}=\alpha U-p E U-\gamma U V, \frac{d V}{d \tau}=e \gamma U V-q E V-\beta V \text { etc }
$$

Lotka-Volterra - analysis

Non-dimensionalising by $\mathrm{u}=\mathrm{U} / \mathrm{U}^{*}, \mathrm{v}=\mathrm{V} / \mathrm{V}^{*}$ and rescaling time, we get

$$
\frac{d u}{d t}=u(1-v), \quad \frac{d v}{d t}=a v(u-1), a=\frac{q E+\beta}{\alpha-p E}
$$

We get the equation of the phase plane as

$$
\frac{d v}{d u}=\frac{a v(u-1)}{u(1-v)}
$$

This has periodic solutions:

$$
\Phi(u, v)=a(u-\log u)+v-\log v=A
$$

Lotka-Volterra - analysis

(a) Latka-Volterra time gerles

(b) Lotka-Voherra phase plane

Figure 2.6 Some numerical solutions of the non-dimensional LotkaVolterra prey-predator model Equations (2.3.9) and the corresponding phase plane Equation (2.3.10).

Average population is the steady state population but both prey and predator populations crash in every cycle

